Lecture 21: Np-hard Problems 21 Np-hard Problems 21.1 'efficient' Problems

نویسنده

  • Shimon Peres
چکیده

A generally-accepted minimum requirement for an algorithm to be considered ‘efficient’ is that its running time is polynomial: O(nc) for some constant c, where n is the size of the input.1 Researchers recognized early on that not all problems can be solved this quickly, but we had a hard time figuring out exactly which ones could and which ones couldn’t. there are several so-called NP-hard problems, which most people believe cannot be solved in polynomial time, even though nobody can prove a super-polynomial lower bound. Circuit satisfiability is a good example of a problem that we don’t know how to solve in polynomial time. In this problem, the input is a boolean circuit: a collection of AND, OR, and NOT gates connected by wires. We will assume that there are no loops in the circuit (so no delay lines or flip-flops). The input to the circuit is a set of m boolean (TRUE/FALSE) values x1, . . . , xm. The output is a single boolean value. Given specific input values, we can calculate the output of the circuit in polynomial (actually, linear) time using depth-first-search, since we can compute the output of a k-input gate in O(k) time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INFR 11102 : Computational Complexity 06 / 02 / 2018 Lecture 7 : More on NP - completeness

After Cook’s paper [Coo71] published, Dick Karp immediately realized that the notion of NP-hardness captures a large amount of intractable combinatorial optimization problems. In [Kar72], he showed 21 problems to be NP-complete. This list quickly increased and by the time of 1979, Garey and Johnson [GJ79] wrote a whole book on NP-complete problems. This book has became a classic nowadays, and t...

متن کامل

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

Lecture 1: Approximation Algorithms, Approximation Ratios, Gap Problems

To date, thousands of natural optimization problems have been shown to be NP-hard [6, 13]. Designing approximation algorithms [4, 17, 21] has become a standard path to attack these problems. For some problem, however, it is even NP-hard to approximate the optimal solution to within a certain ratio. The TRAVELING SALESMAN PROBLEM (TSP), for instance, has no approximation algorithm, since finding...

متن کامل

Theorem 1

In the last lecture, we studied the KNAPSACK problem. The KNAPSACK problem is an NP-hard problem but does admit a pseudo-polynomial time algorithm and can be solved efficiently if the input size is small. We used this pseudo-polynomial time algorithm to obtain an FPTAS for KNAPSACK. In this lecture, we study another class of problems, known as strongly NP-hard problems. Definition 1 (Strongly N...

متن کامل

Ising formulations of many NP problems

*Correspondence: Andrew Lucas, Lyman Laboratory of Physics, Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA e-mail: [email protected] We provide Ising formulations for many NP-complete and NP-hard problems, including all of Karp’s 21 NP-complete problems. This collects and extends mappings to the Ising model from partitioning, covering, and satisfiability....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009